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Abstract. Simplified flood routing models for unsteady flow simulation in reservoirs
and rivers have advantages of relatively small computing requirements when compared
to dynamic routing models based on the complete Saint-Venant equations of unsteady
flow. The range of applicability as governed by accuracy is investigated for two sim-
plified routing models, a level-pool reservoir routing model and a Muskingum-Cunge
river routing model. The routing error for each simplified model is determined by
systematic comparison with an accurate dynamic routing model (DAMBRK). Error
properties of each simplified model are presented graphically as functions of dominant
channel and flood hydrograph parameters.

Intr ion

Within the National Weather Service (NWS) hydrology program for river and
water resource forecasting services, sophisticated dynamic routing models such as
DAMBRK, DWOPER, and FLDWAYV (Fread, 1985; Chow et al., 1988), based on
the complete one-dimensional Saint-Venant equations of unsteady flow, are being
implemented, as resources are available, for particularly complex routing applications
such as dam-break floods, major river systems subject to backwater effects, and tidal
estuaries. This paper presents guidance for selecting which routing applications
should be considered for the dynamic routing models and for two very simple routing
models, i.e., (1) a level-pool reservoir routing model and (2) a diffusion-type
Muskingum-Cunge river routing model. Suitability of the simplified models is
assessed on the basis of the routing error as determined by the deviation of computed
flows between the simplified models and the dynamic model (DAMBRK).

Level-Pool Reservoir Routing

Usually unsteady flow routing in reservoirs is approximated by a simple level-
pool routing technique which is based on the principle of conservation of mass, i.e.,
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I(t) - Q(t) = dS/dt 1)
in which inflow (I) and outflow (Q) are functions of time (t), and the storage (S) is a
function of the water-surface elevation (h) which changes with time (t). The reservoir
is assumed always to have a horizontal water surface throughout its length, hence
level-pool, and Q is assumed to be a function only of h(t). Eq. (1), an ordinary
differential equation, can be solved by an iterative trapezoidal integration method.
Using average values for I(t) and Q(t) over a At interval, and expressing dS/dt as the
product of reservoir surface area (Sa, a known tabular function of h) and change of
water-surface elevation (h) over the j' time step (A¢), Eq. (1) becomes:

0.5(I3+13*Y) - 0.5(QI+QI*Y) - 0.5(Sai+Sal*!)(hi*!-hi)/Ati = 0 Q)
The inflows (I) at times j and j+1 are known from the specified inflow hydrograph,
the outflow (Q) at time j can be computed from the known water-surface elevation (b))
and an appropriate spillway discharge equation. The surface area (Sa’) can be deter-
mined from the known value of b, The unknowns in the equation consist of W+1,

Qi+, Sal*!; the latter two are known nonlinear functions of h*!. Hence, Eq. (2)
can be solved for W*! by an iterative method such as Newton-Raphson, in which

hitd = nitt - £hiThE (it 3)
and k is an iteration counter; f(hkj“) is the left-hand side of Eq. (2) evaluated with

the first estimate for hJ*! which for k=1 is either hi (must be known at t=0) or a
linear extrapolated estimate of h+*!; and f (th“) is the derivative of Eq. (2) with

respect to hi+1, It can be approximated with a numerical derivative, i.e. f / (hg+1) =
[f(hi™ +e) - £ +£)] /[(h" +&) - (hi"'-¢)] where & is a small value, say 0.1 ft
(0.03 m). One or two iterations usually solve Eq. (2) for *!. Once hi*! is
obtained, QI*! is computed from the spillway discharge equation.

Accuracy of Reservoir Routing Models. The accuracy of level-pool routing models
relative to the more accurate distributed dynamic routing models such as DAMBRK

(Fread, 1985; Chow, et al., 1988) is shown in Fig. 1. The error (Eg, in percent) of
the rising limb of the outflow hydrograph, as normalized by the peak outflow, is:

N
Eq = 1001Q, - [}, (Q; - Qp)*NI"? @

i=1
in which QLi is the level-pool routed flow; QDi is the dynamic routed flow, QDp is

the dynamic routed flow peak, and N is the number of computed discharges
comprising the rising limb of the routed hydrograph. The error (Eq) increases as (1)
reservoir mean depth (D,) decreases, (2) reservoir length (L)) increases, (3) time of
rise (T,) of inflow hydrograph decreases, and (4) inflow hydrograph volume
decreases. These effects can be represented by three dimensionless parameters, gy, o,,
and o,; where, 0, = DJL_, o, = L/[3600 T, (gD)!?] in which g is the gravity
acceleration constant and T, is the time (hrs) from beginning of rise until the peak of
the hydrograph, and o, = hydrograph volume/reservoir volume. As shown in Fig. 1,
E, increases as o, increases and as o, and o, decrease; also the influence of o,



increases as o, decreases. An analysis of Fig. 1 indicates that E, exceeds 10% for (a)
most reservoirs subjected to rapidly rising unsteady flows in which T, is less than 1 hr
such as dam-break floods or intermittent turbine releases, and (b) very long reservoirs
(L; > 50 mi) subjected to flash floods with T, less than 18 hrs.
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Fig. 1 Level-pool routing error (Eg) as a function of g;, g, and ¢, (dimensionless
parameters)

Muskingum-Cunge Method

The popular Muskingum method, described in standard reference books, e.g.
Chow, et al., 1988, can be modified by computing the routing coefficients in a partic-
ular way as shown by Cunge (1969); this changes the kinematic-based Muskingum
method to one based on the diffusion analogy which is capable of predicting hydro-
graph attenuation. This modified Muskingum method (known as the Muskingum-
Cunge method) is most effectively used as a distributed flow routing technique. The
recursive equation applicable to each Ax; subreach for each Atl time step is:

Qij:l1 =C, qu + G Qij + G Qijol +C, )

The coefficients C,, C,, and C; are positive values whose sum must equal unity, and
the last term (C,) accounts for the effect of lateral inflow (g;) along the Ax; subreach:

C, = (At - 2KX)/[2K(1-X) + Af] 6)
C, = (At + 2KX)/[2K(1-X) + Af] )
C, = [2ZK(1-X) - A/[2K(1-X) + Af] ®)
C, = Q; Ax AU[2K(1-X) + Af] ©)

in which K is a storage constant and X is a weighting factor. It can be shown

(Cunge, 1969) that Eq. (5) is a finite-difference form of the classical kinematic wave

equation; however, if X is expressed as a particular function of the flow properties,

Eq. (5) is able to account for wave attenuation but not for reverse (negative) flows or



backwater effects. In this method, K and X are computed as follows:
K = Ax/c (10)

X =05[1 - Q/(cBS Ax)] (11)

in which € is the kinematic wave celerity, Qis discharge, B is cross-sectional top-
width associated with Q, and S is the energy slope approximated by the water surface
slope as computed from the backwater solution of the initial steady flow condition to
properly approximate the energy slope for channels with irregular and even adverse
channel bottom slopes. The bar (-) indicates the variable is averaged over Ax and At.
The coefficients, defined by Egs. (6-9), are functions of Ax and At (the independent
parameters), and K and X, which are functions of Q (the dependent variable) and its
corresponding water-surface elevation (h) that may be obtained from a steady, uniform
flow formula such as the Manning equation. Using a nonlinear solution procedure,
the coefficients (K and X) are computed from the known flow properties, ie., Q/,

Q"' Ql,, hi, ni*!, h.,, and estimated values of the unknown flow Q) and its h
value. The estimated values are determined by extrapolation from previously comput-
ed values. The solution procedure is iterative and converges when computed and

estimated values of h agree within a suitably small tolerance, 0.01 ft (0.003 m).

Error Properties of Muskingum-Cunge Routing. In order to assess the magnitude of

errors associated with the nonlinear Muskingum-Cunge routing algorithm, a number
of routing applications having a range of hydrographs and channel bottom slopes were
simulated with the Muskingum-Cunge method as well as with a highly accurate im-
plicit dynamic routing algorithm within the DAMBRK model (Fread, 1985; Chow, et
al., 1988). The Muskingum-Cunge algorithm’s peak discharges and corresponding
water-surface elevations were compared with those computed by the dynamic routing
algorithm. The difference between the two was taken as the magnitude of the error

associat%d with the Muskingum-Cunge algorithm. This error (&) was defined as ¢ =
(z»:f2 + eh)”z, where €q, and ¢, are the peak error in the discharge and depth, nor-

malized about each peak. The results of this empirical error analysis via comparative
routings through 10-, 20-, 50-, and 100-mile channel reaches (L) are shown in Fig. 2.
The lines representing a constant value of ¢ are plotted against the dominant hydro-
graph property, T, (the time of rise in hrs) along the vertical axis, and the energy
slope, S (which is approximated by the average channel bottom slope, ft/ft). The
Muskingum-Cunge algorithm is shown for 10% & curves for the various L routing
reaches. The shaded area below each curve represents all conditions of S and T, that
cause the error (&) to exceed 10% while the unshaded areas are & values less than
10%. The family of curves is represented by the following expression:
T, . =0.0024 S~1-03 (L/20)%13
min

S-O.ll

(12)

) ¢

These curves show that as S increases, there is a gradual nonlinear decrease in the
minimum T, value that can be accommodated by the algorithm for a given & value.
In general, Fig. 2 indicates that the Muskingum-Cunge algorithm incurs errors less
than 10% when applied to rapidly rising hydrographs (T, > 1 hr) for channels with
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Fig. 2 Minimum allowable time of rise (Tr) which restricts errors (¢) in Muskingum-
Cunge routing applications to less than 10%

S > 0.002 ft/ft (10 ft/mi). Also, the minimum allowable T, gradually increases to
20-100 hrs (depending on the reach length) as the slope decreases to 0.0001 (0.5
ft/mi).

Conclusions

The level-pool reservoir routing model is shown empirically to incur errors
exceeding 10% for (a) most reservoirs subjected to rapidly rising unsteady flows in
which the time of rise of the hydrograph is less than 1.0 hour such as dam-break
floods or intermittent turbine releases and (b) very long reservoirs (length > 50 mi)
subjected to flash floods with times of rise less than 18 hours. The Muskingum-
Cunge river routing model’s error properties, excluding those due to neglecting back-
water effects, increase with (a) decrease in the time of rise of the hydrograph, (b) de-
crease in the channel bottom slope, and (c) increase in the length of the routing reach.
In general, the Muskingum-Cunge method incurs errors exceeding 10% when applied
to hydrographs having a time of rise (hrs) smaller than that given by Eq. (12).
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